**Choice H**

$$18000\times2=36000$$ $$83000-36000=47000$$ $$\frac{47000}{7000}=6.7$$

You will need 7 trucks.

**Choice D**

$$15=3\times5$$ $$25=5\times5$$ $$30=2\times3\times5$$ $$\Rightarrow 2\times3\times5\times5=150$$

**Choice K**

$$11.38 + 1.85 = 13.23 gallons$$ $$13.23\times$1.36=$17.99$$ $$$17.99+4=$21.99$$

**Choice F**

$$3.9\times 10^{-1}=0.39$$ $$3.9\times 10^{-2}=0.039$$ $$3.9\times 10^{-3}=0.0039$$

There will always be one less zero in front of the three and the nine.

**Choice D**

$$=5c(2d-5c)-3d(2d-5c)$$ $$=10cd-36c^{2}-6d^{2}+15cd$$ $$=25cd-36c^{2}-6d^{2}$$

**Choice G**

$$\angle ADB=180°-30°-20°=130°$$ $$\angle EDA=180°-130°=50°$$ $$\angle EAD=180°-83°-50°=47°$$

**Choice D**

$$x + y = 21 $$ $$x – y = 15$$ $$\Rightarrow 2x=21+15=36$$ $$x=18$$ $$y=3$$ $$xy=18\times3=54$$

**Choice K**

For Green Tree, the equation is 50 + 0.25m = 100, so m = 200.

For Big Rock, the equation is 60 + 0.2m= 100, so m = 200.

Therefore, she can drive the same amount of miles with either company.

**Choice E**

$$\frac{(x-5)^{2}}{x^{2}-25}$$ $$=\frac{(x-5)(x-5)}{(x-5)(x+5)}$$ $$=\frac{(x-5)}{(x+5)}$$

**Choice F**

$$\frac{3}{8}=\frac{x}{80}$$ $$x=30$$

**Choice B**

Just get the decimal equivalents …

**Choice H**

$$t=0,y=12, $$

The y-intercept is …

**Choice C**

T is the speed of …

**Choice F**

$$x=0,y=-3 \Rightarrow (F)、(H)$$ $$x=2,y=0 \Rightarrow …

**Choice D**

$$25\times 3^{5}=6075$$

**Choice K**

$$\frac{9}{36}=\frac{16}{x}$$ $$\Rightarrow x=64$$

**Choice D**

You can spend exactly $14 …

**Choice H**

$$y=ax^{2}+bx+c$$ $$y=2x^{2}-12x+4$$ $$x=\frac{-b}{2a}=\frac{12}{4}=3$$ $$\Rightarrow x=3,y=-5$$

**Choice B**

$$\frac{(2,8)+(-2,6)}{2}=(0,7)$$

**Choice J**

$$c=2\pi r=12\pi$$

**Choice C**

This is a 3-4-5 right …

**Choice F**

$$\sin=\frac{opposite}{hypotenuse}$$ $$\angle CDA = \frac{\overline{AC}}{\overline{AD}}$$

**Choice A**

DCBF is a rectangle, with …

**Choice J**

$$\triangle FGH=\frac{1}{4}\Box ABGH$$ $$\Box ABGH=\frac{1}{4}\Box …

**Choice D**

$$2\frac{1}{6},3\frac{1}{3},4\frac{1}{2}$$

The common difference is …

**Choice G**

$$B=x+2$$ $$y=A-4 \Rightarrow A=y+4$$ $$B+A=(x+2)+(y+4)=x+y+6$$

**Choice C**

$$10,10,x,x$$ $$20+2x=64$$ $$x=22$$ $$\Rightarrow 10,22,22$$

**Choice H**

**Choice B**

The midpoint of AD to …

**Choice G**

The area of a rhombus: …

**Choice D**

$$5\times4\times3\times2\times1=120$$

**Choice G**

$$3^{2}+h^{2}=6^{2}$$ $$h=3\sqrt{3}\approx 3\times1.73=5.19$$

**Choice A**

$$x^{2}\lt x$$

Only for x …

**Choice G**

$$48+66=114$$

**Choice A**

If the radius of the …

**Choice F**

$$C^{2}=D \Rightarrow C=\sqrt{D}$$ $$C=\sqrt{B} \Rightarrow …

**Choice D**

If you double the radius …

**Choice J**

$$2^{2}+x^{2}=3^{2}$$ $$x=\sqrt{5}$$ $$\cos \angle A=\frac{\sqrt{5}}{3}$$

**Choice E**

The point where a line …

**Choice F**

$$-16t^{2}+32t-16=0$$ $$\Rightarrow t^{2}-2t+1=0$$ $$t=1,-2$$

The …

**Choice C**

$$\angle CBD=180°-132°=48°$$ $$132°=3x$$ $$x=44°$$ $$\angle …

**Choice F**

$$\csc =\frac{hypotenuse}{opposite}=\frac{1}{\sin}$$ $$=\frac{1}{0.4}=\frac{5}{2}$$

**Choice E**

If B has a slower …

**Choice K**

Each of the first five …

**Choice E**

If x is positive or …

**Choice J**

It's in the first quadrant, …

**Choice A**

Picture a vector of the …

**Choice K**

$$=\frac{\sqrt{r}}{\sqrt{s}}+\frac{\sqrt{s}}{\sqrt{r}}$$ $$=\frac{\sqrt{r}\times\sqrt{r}}{\sqrt{s}\times\sqrt{r}}+\frac{\sqrt{s}\times\sqrt{s}}{\sqrt{r}\times\sqrt{s}}$$ $$=\frac{r+s}{\sqrt{rs}}$$