2024 June(G20) Math Question 30
Trigonometry
- Pythagorean Theorem & sin cos tan
In a right triangle, if sinθ=ab\sin\theta = \frac{a}{b}sinθ=ba and tanθ=ac\tan\theta = \frac{a}{c}tanθ=ca, identify the sides:
sinθ=oppositehypotenuse=ab ⟹ opposite=a, hypotenuse=b\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{b} \implies \text{opposite} = a, \; \text{hypotenuse} = bsinθ=hypotenuseopposite=ba⟹opposite=a,hypotenuse=b
tanθ=oppositeadjacent=ac ⟹ adjacent=c\tan\theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{a}{c} \implies \text{adjacent} = ctanθ=adjacentopposite=ca⟹adjacent=c
Therefore:
cosθ=adjacenthypotenuse=cb\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{c}{b}cosθ=hypotenuseadjacent=bc
Comments