• Choice F

    Since 0<m<n0 < m < n, we have m+n>n>m>0m + n > n > m > 0.

    Testing each expression:

    • m+nm=1+nm>1+1=2\frac{m+n}{m} = 1 + \frac{n}{m} > 1 + 1 = 2 (since n>mn > m)
    • m+nn=mn+1<2\frac{m+n}{n} = \frac{m}{n} + 1 < 2 (since m<nm < n)
    • m+nm+n=1\frac{m+n}{m+n} = 1
    • mm+n<1\frac{m}{m+n} < 1
    • nm+n<1\frac{n}{m+n} < 1

    m+nm\frac{m+n}{m} has the greatest value.

    Skills you are tested for:

    Was this explanation helpful?
  • Comments

    To leave a comment,