**Choice J**

$$\Rightarrow 2x-12+x=36$$ $$\Rightarrow 3x-12=36$$ $$\Rightarrow 3x=48$$ $$\Rightarrow x=16$$

**Choice G**

$$\angle 1\cong\angle3$$ $$\angle 2\cong\angle4$$ $$\angle 8\cong\angle6$$ $$\angle 5\cong\angle7$$

**Choice J**

An obtuse angle is a type of angle that is always larger than 90° but less than 180°.

**Choice C**

$$f(-5)=\frac{-3[(-5)^{2}+3(-5)+2]}{15(-5)+15}$$ $$=\frac{-3(25-15+2)}{-75+15}$$ $$=\frac{-3(12)}{-60}$$ $$=\frac{36}{60}$$ $$=\frac{3}{5}$$

**Choice G**

$$y=mx+b$$ $$2y=-3x+6$$ $$y=\frac{-3}{2}x+6$$ $$m=\frac{-3}{2}$$

**Choice A**

$$\sqrt{20}-\sqrt{45}$$ $$=\sqrt{5}\sqrt{4}-\sqrt{5}\sqrt{9}$$ $$=\sqrt{5}(\sqrt{4}-\sqrt{9})$$ $$=\sqrt{5}(2-3)$$ $$=-\sqrt{5}$$

**Choice F**

$$l=Prt$$ $$t=\frac{l}{Pr}=\frac{l}{P\times0.05}$$

**Choice A**

$$f(2005)=2f(1998)+100$$

**Choice K**

$$4^{2}+6^{2}=x^{2}$$ $$16+36=52=x^{2}$$ $$x=\sqrt{52}$$

**Choice C**

$$\angle A+\angle B+\angle C=180°$$ $$\angle …

**Choice G**

$$\cos B=\frac{\overline{AB}}{\overline{BC}}$$

**Choice B**

$$g(1)=1^{2}+1=1+1=2$$ $$f(g(1))=f(2)=2+3=5$$

**Choice K**

$$=3^{3}\times x^{2\times3}=27x^{6}$$

**Choice B**

$$15^{2}-9^{2}=\overline{AE}^{2}$$ $$225-81=144=12^{2}$$ $$\overline{AE}=12$$ $$12+4=16$$

**Choice K**

$$3\frac{3}{7}=3\frac{30}{70}$$ $$-(-3.5)=3.5=3\frac{35}{70}$$ $$3\frac{2}{5}=3\frac{28}{70}$$ $$\Rightarrow 3\frac{2}{5}\lt3\frac{3}{7}\lt-(-3.5)$$

**Choice D**

$$S:x$$ $$L:10-x$$ $$x(20)+(10-x)35=260$$ $$20x+350-35x=260$$ $$350-260=15x$$ …

**Choice H**

$$55+55+55(0.85)=137.5$$

**Choice B**

$$12=20a+b---(1)$$ $$(20+5)(12-2)$$ $$\Rightarrow 10=25a+b---(2)$$ $$(2)-(1)$$ …

**Choice K**

$$\frac{1}{1+\frac{1}{1+\frac{1}{2}}}$$ $$=\frac{1}{1+\frac{1}{\frac{3}{2}}}$$ $$=\frac{1}{1+\frac{2}{3}}$$ $$=\frac{1}{\frac{3}{5}}$$ $$=\frac{5}{3}$$

**Choice D**

$$y=0=-2x+8$$ $$x=4$$

**Choice H**

$$h=-16t^{2}+48t$$ $$32=-16t^{2}+48t$$ $$\Rightarrow -16t^{2}+48t-32=0$$ $$\Rightarrow …

**Choice D**

$$3x-2\gt9$$ $$\Rightarrow 3x\gt11$$ $$\Rightarrow x\gt\frac{11}{3}$$ …

**Choice J**

$$(7,-3)\Rightarrow(7-7,-3+3)=(0,0)=headquarters$$ $$(7,-3)\Rightarrow(7+5-2,-3+4)=(10,1)$$ $$(0,0)\rightarrow(10,1)$$ $$\sqrt{(10-1)^{2}+(1-0)^{2}}=\sqrt{81+1}=\sqrt{82}\approx 9.05$$

**Choice F**

$$\tan40°=\frac{\overline{XY}}{100}$$ $$\overline{XY}=100\tan 40°$$

**Choice F**

$$\sin 56°=\frac{125}{?}$$ $$?=\frac{125}{\sin 56°}$$

**Choice C**

$$\pi r^{2}=\pi\times3^{2}=9\pi$$

**Choice G**

$$r=1-(-1)=2$$

**Choice B**

$$m=-\frac{a-0}{b-0}=-\frac{a}{b}$$ $$\Rightarrow y\leq-\frac{a}{b}x+a$$

**Choice F**

$$r_{B}=\frac{2x}{2}=x$$ $$x:x=1:1$$

**Choice E**

$$1:1:\sqrt{2}$$ $$\Rightarrow 5\sqrt{2}:5\sqrt{2}:10$$ $$18\times5\sqrt{2}+5\sqrt{2}\times5\sqrt{2}\times\frac{1}{2}$$ $$=90\sqrt{2}+25$$ …

**Choice J**

There are 8 pauses between …

**Choice A**

$$2a=3b$$ $$\frac{1}{4}b\times4=\frac{1}{2}c\times4$$ $$\Rightarrow b=2c$$ $$2a=3b=6c$$ …

**Choice F**

Because the amount he is …

**Choice C**

$$\because i^{2}= -1$$

The correct …

**Choice G**

$$\frac{100}{4}=2r$$ $$r=12.5$$ $$2\pi r\times\frac{1}{2}=\pi r=\pi\times12.5$$ …

**Choice C**

Simply graph y = a-x …

**Choice J**

$$12^{2}f=2fd^{2}$$ $$144f=2fd^{2}$$ $$72=d^{2}$$ $$d=6\sqrt{2}$$

**Choice A**

$$30°:60°:90°=1:\sqrt{3}:2$$ $$\Rightarrow 2:2\sqrt{3}:4$$ $$Area=2\times2\sqrt{3}\times\frac{1}{2}\times4$$ $$=8\sqrt{3}$$

**Choice J**

$$\because 13^{2}=5^{2}+12^{2}$$

The unknown leg …

**Choice D**

$$\frac{1}{11^{20}}-\frac{1}{11^{21}}$$ $$=\frac{1\times11}{11^{20}\times11}-\frac{1}{11^{21}}$$ $$=\frac{11}{11^{21}}-\frac{1}{11^{21}}$$ $$=\frac{10}{11^{21}}$$

**Choice F**

$$\tan\theta\times\cos\theta$$ $$=\frac{2}{\sqrt{5}}\times\frac{\sqrt{5}}{3}$$ $$=\frac{2}{3}$$

**Choice E**

The side length of each …

**Choice F**

For example, if x=-1 then …