**Choice A**

To maximize the value of x, you must minimize the value of

$$y^{2}$$ $$y^{2}=0,\ x^{2}=256$$ $$x=\pm\sqrt{256}=\pm16$$The positive 16 is the answer.

**Choice C**

$$N(4)=\frac{1200\times4^{2}+10}{4^{2}+1}$$ $$=\frac{1200\times16+10}{16+1}$$ $$=\frac{19200}{17}$$ $$\approx 1130$$

**Choice G**

$$35=5\times7$$ $$56=2^{3}\times7$$ $$16=2^{4}$$ $$\Rightarrow2^{4}\times5\times7=16\times5\times7=560$$

**Choice B**

Because triangles ABC and DEC are congruent,

$$\angle CAB=\angle CDE$$ $$\angle CDE= 180° – 45° – 70° = 65°$$**Choice F**

$$=\frac{\frac{57}{7}}{\frac{15}{14}}$$ $$=\frac{57}{7}\times\frac{14}{15}$$ $$=\frac{114}{15}$$ $$=\frac{38}{5}$$

**Choice D**

$$x + y = 15 ---(1)$$ $$x – y = 9---(2)$$ $$(1)+(2)$$ $$2x=24$$ $$x=12$$ $$y=3$$ $$xy=12(3)=36$$

**Choice J**

1. Draw A as a point on a circle.

2. Draw B 6 units counterclockwise from A.

3. Draw C 2 units clockwise from point A, between A and B in the clockwise direction.

4. Draw D 9 units clockwise from A, between C and B in the clockwise direction.

Now your points are in the correct order, A, C, B, D in the clockwise direction.

**Choice K**

$$ Slope-intercept (y = mx + b) form$$ $$ 6x – 2 = y \Rightarrow y = 6x – 2$$

**Choice K**

$$Slope=\frac{(y2 – y1)}{(x2 – x1)}$$ $$=\frac{10-8}{-2-3}$$ $$=\frac{2}{-5}$$

**Choice E**

$$a + a + b …

**Choice H**

$$\frac{250}{875}$$ $$=0.286 $$

**Choice B**

$$37-13=24$$ $$24=3\times8$$ $$13,16,19,22,25,28,31,34,37$$

The question …

**Choice F**

$$x^{2}\neq49\Rightarrow x\neq\pm7$$ $$x^{2}-49=(x+7)(x-7)$$ $$\Rightarrow\frac{(x-7)(x-7)}{(x+7)(x-7)}$$ $$=\frac{(x-7)}{(x+7)}$$

**Choice C**

$$12:8=15:x$$ $$8\times15=12x$$ $$x=10$$

**Choice H**

When x -2, (x + …

**Choice B**

$$z + 2(z + 2) …

**Choice G**

B is 10 blocks east …

**Choice E**

$$b=6c \Rightarrow c=\frac{1}{6}b$$ $$a=2c=2(\frac{1}{6}b)=\frac{1}{3}b$$

**Choice J**

$$\frac{5}{9}(59-32)=\frac{5}{9}\times27=15$$ $$\frac{5}{9}(68-32)=\frac{5}{9}\times36=20$$ $$\Rightarrow 15° \leq …

**Choice C**

By parallel line properties,

$$\angle …**Choice J**

$$6\times6\times5=180$$

**Choice E**

The triangle is a 3-4-5 …

**Choice H**

Shade any square whose reflection …

**Choice C**

$$4x(x)=80$$ $$\Rightarrow 4x^{2}=80$$ $$\Rightarrow x=\sqrt{20}$$ …

**Choice K**

The volume of this rectangular …

**Choice B**

$$t = 10f – 20$$ …

**Choice G**

$$Tangent=\frac{opposite}{adjacent}$$ $$\tan25°=\frac{x}{100}$$ $$x=100\tan25°=100\times0.47=47$$

**Choice E**

3-4-5 triangle (6-8-10)

**Choice J**

$$4^{3}=64$$ $$4\times3=12$$ $$12^{3}=1728$$

The volume …

**Choice E**

$$(x-h)^{2}+(y-k)^{2}=r^{2}$$

Based on this equation, …

**Choice J**

The perimeter of a rectangle …

**Choice A**

There are 2 possible vertical …

**Choice F**

The current area of the …

**Choice E**

Compared to y = cos …

**Choice K**

$$0\lt p\lt q$$

(F)\ 0\lt …

**Choice D**

$$a=b\times0.25$$ $$\frac{b\times1.35}{b\times0.25}=\frac{1.35}{0.25}=5.4$$

**Choice H**

$$\sin^{2}\theta+\cos^{2}\theta-4$$ $$=1-4$$ $$=-3$$

**Choice E**

Therefore, the line of reflection …

**Choice H**

$$\frac{x}{144°}=\frac{60}{360°}$$ $$x=144\times\frac{60}{360}=24$$

**Choice B**

The plane section of such …

**Choice F**

$$\log x=y \Rightarrow a^{y}=x$$ $$b^{4}=81$$ …

**Choice D**

f(x + a) + b …

**Choice F**

Based on parallel line properties， …

**Choice D**

To maximize the value of P(x,y), you must maximize the value of 4x + 3y.

At point B, P(x,y) = 4 • 0 + 3 • 4 = 12.

At point C, P(x,y) =4 • 4 + 3 • 0 = 16.

The value of P(x,y) is higher at point C then at point B and points B and C are connected by a straight line delineating an edge of the shaded region, no other points along this line or anywhere else in the shaded region can have a higher value than point C.

**Choice F**

(F) Look at the graph of P(x,y) above question 55 and compare it to the graph in 56 that labels the quadrants. P(x,y) contains points in quadrants I and II only.

**Choice A**

Tangent is defined as opposite/adjacent. …

**Choice K**

If f(x)=0 when x=3, (x …

**Choice C**

$$\frac{5}{1000000}=5\cdot 10^{-6}$$

**Choice F**

$$(a^{2}-b^{2})=(a+b)(a-b)$$ $$(a – b)\gt (a …